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Abstract

An irreversible cycle model of the quantum Brayton refrigeration cycle using an ideal Bose or Fermi gas as the working substance is established.
Based on the theory of statistical mechanics and thermodynamic properties of ideal quantum gases, expressions for several important performance
parameters such as the cooling rate, coefficient of performance and power input, are derived. The influence of the degeneracy of quantum gases,
the internal irreversibility of the working substance and the finite-rate heat transfer between the working substance and the heat reservoirs on
the optimal performance of the cycle is investigated. By using numerical solutions, the cooling rate of the cycle is optimized for a set of given
parameters. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal boundaries of the coefficient
of performance and power input are given. The optimally operating region of the cycle is determined. The expressions of some performance
parameters for some special cases are derived analytically.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

For a cryogenic refrigeration device, the performance of the
working substance can be only described by the theory of quan-
tum statistical mechanics instead of that of classical statistical
mechanics. The influence of the quantum characteristics of the
working substance on the performance of the cycle must be
considered in thermodynamic analysis [1–7]. In recent years,
the performance analysis of the cryogenic thermodynamic cy-
cles, which may be called the quantum thermodynamic cycles,
has become one of the interesting research subjects on thermo-
dynamics and statistical physics. Many authors have studied the
performance characteristics of the cryogenic refrigeration cy-
cles working with ideal quantum gases based on the statistical
mechanics and thermodynamic theory [7–15]. Many meaning-
ful conclusions have been obtained.
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It is well known that the previous investigation on the quan-
tum thermodynamic cycles mainly focuses on the effects of the
quantum degeneracy [1–4,8,10,13,14], regeneration [9,15] and
irreversibility [5,11,12] on the performance of the thermody-
namic cycles working with quantum gases. For example, Say-
gin and Sisman [1–3,8], He et al. [10], and Lin et al. [13,14]
analyzed the influence of the quantum degeneracy on the per-
formance of the quantum thermodynamic cycle working with
ideal quantum gases. Chen et al. [9] and Yang et al. [15] in-
vestigated the influence of the regeneration on the performance
of the quantum thermodynamic cycle working with ideal quan-
tum gases. Wu et al. [5,12] and Zhang et al. [11] researched
the effect of irreversibility on the optimal performance of the
irreversible quantum Brayton cycles with ideal quantum gases.
Recently, the influence of the irreversibility of finite-rate heat
transfer between the working substance and the heat reservoirs
on the cooling rate and the optimal performance of an irre-
versible cryogenic refrigeration cycle using an ideal quantum
gas as the refrigerant has been also considered [7]. However,
the influence of the irreversibility of finite-rate heat transfer
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Nomenclature

A total heat transfer area . . . . . . . . . . . . . . . . . . . . . . m2

AH heat transfer area between the working substance
and the heat sink . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

AL heat transfer area between the working substance
and the cooled space . . . . . . . . . . . . . . . . . . . . . . . m2

CP heat capacity at constant-pressure . . . . . . . . . J K−1

F(z) correction function
h Planck constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J s
k Boltzmann constant . . . . . . . . . . . . . . . . . . . . . . J K−1

m rest mass of a particle . . . . . . . . . . . . . . . . . . . . . . . kg
PH pressure of high constant-pressure process . . . . Pa
PL pressure of low constant-pressure process . . . . . Pa
QH amount of heat released to the heat sink . . . . . . . . J
QL refrigeration load . . . . . . . . . . . . . . . . . . . . . . . . . . . . J
rP pressure ratio
R cooling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
Rmax maximum cooling rate . . . . . . . . . . . . . . . . . . . . . . W
Ti temperature at state i . . . . . . . . . . . . . . . . . . . . . . . . K

TH temperature of the heat sink . . . . . . . . . . . . . . . . . . K
TL temperature of the cooled space . . . . . . . . . . . . . . . K
UH heat transfer coefficient between the working

substance and the heat sink. . . . . . . . . . . . J K−1 s−1

UL heat transfer coefficient between the working
substance and the cooled space . . . . . . . . J K−1 s−1

Ẇ power input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
Ẇm power input at the maximum cooling rate . . . . . W
z fugacity

Greek symbols

ε coefficient of performance
εm coefficient of performance at the maximum cooling

rate
ηc compression efficiencies
ηe expansion efficiencies
τ cycle period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
on the performance of a quantum Brayton refrigeration cycle
has been rarely studied. Consequently, it is of significance to
investigate the synthesis influence of the various irreversibil-
ities, which especially include the finite-rate heat transfer, on
the optimal performance of the quantum Brayton cryogenic re-
frigeration cycle.

In the present paper, the optimal performance characteris-
tics of the irreversible Brayton cryogenic refrigeration cycle
composed of two adiabatic and two isobaric processes are in-
vestigated. The working substance of the cycle consists of ideal
Fermi or Bose gases. The general expressions of several im-
portant parameters such as the cooling rate, power input and
coefficient of performance are derived. The performance char-
acteristics of the cycle are revealed. The curves of the optimal
relation between the cooling rate and the coefficient of perfor-
mance are obtained. The optimal performances of the cycle are
discussed in detail. The optimum criteria of some important pa-
rameters are obtained.

2. An irreversible Brayton refrigeration cycle

An irreversible Brayton refrigeration cycle using an ideal
Bose or Fermi gas as the working substance may be simply
called the irreversible quantum Brayton refrigeration cycle. It is
composed of two adiabatic and two constant-pressure processes
and operated between the heat sink at temperature TH and the
cooled space at temperature TL. The temperature–entropy di-
agram of the cycle is shown in Fig. 1, where the two dashed
lines indicate two irreversible adiabatic processes (2-3 and 4-1),
the two vertical solid lines indicate two reversible adiabatic
processes (2-3S and 4-1S), PH and PL are the pressures of the
high and low constant-pressure processes, QH and QL are the
amounts of heat exchanged between the working substance and
the heat reservoirs in the two constant-pressure processes per
cycle, and the temperatures at state points 1S, 1, 2, 3, 3S and 4
Fig. 1. The T –S diagram of an irreversible quantum Brayton refrigeration cycle.

are indicated by T1S, T1, T2, T3, T3S and T4, respectively. In a
real refrigerator, owing to the internal dissipation of the work-
ing substance, all the processes are irreversible. According to
Fig. 1, one may introduce the compression and expansion effi-
ciencies [16–27]

ηc = T3S − T2

T3 − T2
(1)

and

ηe = T4 − T1

T4 − T1S
(2)

to describe the irreversibility of the adiabatic processes. When
ηc = 1 and ηe = 1, the adiabatic compression and expansion
processes become reversible.

According to quantum statistical mechanics [28,29] and the
thermodynamic properties of ideal Fermi and Bose gases, one
can calculate that the amounts of heat exchanged between the
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working substance and the heat reservoirs in the two isobaric
processes of the cycle are, respectively, given by [11]

QL =
T2∫

T1

CP dT = 5

2
Nk

[
T2F(T2,PL) − T1F(T1,PL)

]
(3)

and

QH =
T3∫

T4

CP dT = 5

2
Nk

[
T3F(T3,PH ) − T4F(T4,PH )

]
(4)

where CP = 5
2Nk{ ∂

∂T
[T F(T ,P )]}P is the heat capacity at

constant-pressure, k is the Boltzmann constant,

F(T ,P ) = F(z)

=
[

1

�(5/2)

∞∫
0

x3/2

z−1ex ± 1
dx

]

×
[

1

�(3/2)

∞∫
0

x1/2

z−1ex ± 1
dx

]−1

is the correction function, fl(z) = 1
�(l)

∫ ∞
0

xl−1

z−1ex+1
dx is called

the Fermi integral, gl(z) = 1
�(l)

∫ ∞
0

xl−1

z−1ex−1
dx is called the

Bose integral, z is the fugacity, �(5/2) = 1.32934, �(3/2) =
0.886227, and the sign “±” correspond to ideal Fermi and Bose
gases, respectively. When the two adiabatic processes are re-
versible, one can obtain [13]

T3S

T2
= T4

T1S
=

(
PH

PL

)2/5

= r
2/5
P (5)

where rP = PH /PL is the ratio of the pressures in the high and
low constant-pressure processes.

From Eqs. (1), (2) and (5), one can obtain

T1 = [
1 − ηe

(
1 − r

−2/5
P

)]
T4 = XT4 (6)

and

T3 = [
1 + η−1

c

(
r

2/5
P − 1

)]
T2 = YT2 (7)

where X = 1 − ηe(1 − r
−2/5
P ) and Y = 1 + η−1

c (r
2/5
P − 1). By

using Eqs. (6) and (7), Eqs. (3) and (4) can be further expressed
as

QL =
T2∫

T1

CP dT = 5

2
Nk

[
T2F(T2,PL) − XT4F(XT4,PL)

]
(8)

and

QH =
T3∫

T4

CP dT = 5

2
Nk

[
YT2F(YT2,PH ) − T4F(T4,PH )

]
(9)

When heat transfer obeys Newton’s heat transfer law [30,31],
QL and QH can be, respectively, expressed as

QL = ULAL(T2 − T1)τ/ ln
[
(TL − T1)/(TL − T2)

]
(10)
and

QH = UH AH (T3 − T4)τ/ ln
[
(T3 − TH )/(T4 − TH )

]
(11)

where UL and UH are, respectively, the heat transfer coeffi-
cients between the refrigerator and the reservoirs, AL and AH

are, respectively, the heat transfer areas between the refrigera-
tor and the reservoirs, and τ is the cycle period. The total heat
transfer area A of the cycle is

A = AL + AH (12)

Using Eqs. (6)–(12), one can obtain the expressions of the ratios
of the cold-side and hot-side heat transfer areas to the total heat
transfer area as

AL = A

1 + B
UL(T2−XT4) ln[(YT2−TH )/(T4−TH )]
UH (YT2−T4) ln[(TL−XT4)/(TL−T2)]

(13)

and

AH = A

1 + 1
B

UH (YT2−T4) ln[(TL−XT4)/(TL−T2)]
UL(T2−XT4) ln[(YT2−TH )/(T4−TH )]

(14)

where B = YT2F(YT2,PH )−T4F(T4,PH )
T2F(T2,PL)−XT4F(XT4,PL)

.

3. Expressions of several important parameters

The cooling rate, coefficient of performance and power input
are three important parameters of a quantum Brayton refrigera-
tion cycle. In order to understand the performance of a quantum
Brayton refrigeration cycle, one must derive the expressions of
these three parameters. Using Eqs. (8)–(11), (13) and (14), we
find that the cooling rate, coefficient of performance and power
input may be, respectively, expressed as

R = QL

τ

= {
AUH UL(YT2 − T4)(T2 − XT4)

}
/
{
UH (YT2 − T4) ln

[
(TL − XT4)/(TL − T2)

]
+ ULB(T2 − XT4) ln

[
(YT2 − TH )/(T4 − TH )

]}
(15)

ε = QL

QH − QL

= 1

B − 1
(16)

and

Ẇ = QH − QL

τ

= {
UH ULA(YT2 − T4)(T2 − XT4)(B − 1)

}
/
{
UH (YT2 − T4) ln

[
(TL − XT4)/(TL − T2)

]
+ ULB(T2 − XT4) ln

[
(YT2 − TH )/(T4 − TH )

]}
(17)

Using the above equations, one can analyze the general per-
formance characteristics of an irreversible quantum Brayton
refrigeration cycle and give the optimal criteria of some im-
portant performance parameters.
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4. General optimum performance characteristics

It is seen from Eq. (15) that the cooling rate is a function
of two variables (T2, T4) for given values of the other parame-
ters. Choosing 4He and 3He gas as the working substance of the
cycle and using Eq. (15) and the thermodynamic properties of
ideal Bose and Fermi gases, one can generate three-dimensional
graphs (T2, T4,R

∗), as shown in Fig. 2(a) and (b), respectively,
where R∗ = R/(AUTL) is the dimensionless cooling rate and
the parameters TL = 10 K, TH = 25 K, PL = 0.6 MPa, rP =
50, ηe = ηc = 0.95 and UL = UH = U are chosen [32–35]. It
can be seen from Fig. 2 that the cooling rate R first increases
and then decreases as T2 or T4 increases. It shows clearly that
there are the optimal values of T2 and T4 at which the cool-
ing rate R attains its maximum for a set of given values of the
other parameters. One can solve Eqs. (13)–(17) numerically and
generate the R∗

max ∼ rP , εm ∼ rP , R∗ ∼ ε, Ẇ ∗ ∼ ε, Tim ∼ rP
(i = 1,2,3,4), (AL/A)m ∼ rP and (AH /A)m ∼ rP optimal
characteristic curves of the cycle, as shown in Figs. 3–8, respec-
tively, where Ẇ ∗ = Ẇ/(AUTL) is the dimensionless power
input, and εm, Tim (i = 1,2,3,4), (AL/A)m and (AH /A)m
are, respectively, the corresponding coefficient of performance,
temperatures at state points 1, 2, 3, 4, the ratios of the cold-side

(a)

(b)

Fig. 2. The cooling rate of the quantum Brayton refrigeration cycle working
with the ideal (a) Bose and (b) Fermi gases as a function of the temperatures
(T2, T4). The graphs are presented for the parameters TL = 10 K, TH = 25 K,
PL = 0.6 MPa, rP = 50, ηe = ηc = 0.95 and UL = UH .
and hot-side heat transfer areas to the total heat transfer area at
the maximum cooling rate.

It is clearly seen from Figs. 3 and 4 that the maximum cool-
ing rate increases while the corresponding coefficient of per-
formance decreases as the pressure ratio increases. The larger
the irreversibility of the adiabatic processes is, the smaller the
maximum cooling rate and the corresponding coefficient of per-
formance.

Fig. 5 shows clearly that the fundamental optimal relation
between the cooling rate and the coefficient of performance is
not monotonic and there exist a maximum cooling rate Rmax

and a corresponding coefficient of performance εm for the given
values of the other parameters TL, TH , PL, rP , UL and UH . Ob-
viously, the maximum cooling rate Rmax and the corresponding
coefficient of performance εm will be different for differently
given values of the other parameters. Fig. 5 also shows that
when R < Rmax, there are two different coefficients of per-
formance for a given cooling rate R, where one is smaller
than εm and the other is larger than εm. When ε < εm, the
cooling rate will decrease as the coefficient of performance is
decreased. It indicates that the region ε < εm is not optimal.
Consequently, the optimal region of the coefficient of perfor-
mance should be

Fig. 3. The R∗
max ∼ rP curves. Curves a and b correspond to the cases of

ηe = ηc = 0.93 and ηe = ηc = 0.95, respectively. The values of the other para-
meters TH , TL , UL , UH and PL are the same as those used in Fig. 2.

Fig. 4. The εm ∼ rP curves. The values of the parameters TH , TL , UL , UH ,
ηc , ηe and PL are the same as those used in Fig. 3.
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ε � εm (18)

When a quantum Brayton refrigeration cycle is operated in this
region, the cooling rate will increase as the coefficient of per-
formance is decreased, and vice versa.

According to Eq. (18), one can further determine the optimal
region of the power input as

Ẇ � Ẇm (19)

Fig. 5. The R∗ ∼ ε curves for rP = 50. The values of the parameters TH , TL ,
UL , UH , ηc , ηe and PL are the same as those used in Fig. 3.
where Wm is the power input at the maximum cooling rate, as
shown in Fig. 6.

The above results show clearly that the maximum cooling
rate Rmax, coefficient of performance εm and power input Ẇm

at the maximum cooling rate are three important performance
parameters of an irreversible quantum Brayton refrigeration cy-
cle, where εm and Ẇm determine the allowable values of the

Fig. 6. The Ẇ∗ ∼ ε curves for rP = 50. The values of the parameters TH , TL ,
UL , UH , ηc , ηe and PL are the same as those used in Fig. 3.
(a) (b)

(c) (d)

Fig. 7. The (Ti )m ∼ rP (i = 1,2,3,4) curves. The values of the parameters TH , TL , UL , UH , ηc , ηe and PL are the same as those used in Fig. 3.
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Fig. 8. The (AL/A)m ∼ rP and (AH /A)m ∼ rP curves. The values of the
parameters TH , TL , UL , UH , ηc , ηe and PL are the same as those used in
Fig. 3.

lower and upper bounds of the optimal coefficient of perfor-
mance and power input, respectively.

It can be seen from Fig. 7 that the temperatures, T1m and
T2m, of the working substance at the maximum cooling rate
decrease while T3m and T4m increase as the pressure ratio rP in-
creases. The larger the irreversibility of the adiabatic processes
is, the higher the temperatures T1m, T2m and T3m, while the
lower the temperature T4m.

Fig. 8 shows that the influence of the pressure ratio rP on
the ratios of the cold-side and hot-side heat transfer areas to the
total heat transfer area at the maximum cooling rate (AL/A)m
and (AH /A)m is small so that (AL/A)m and (AH /A)m are al-
most invariable for a large range of rP . However, the influence
of the irreversibility of the adiabatic processes on (AL/A)m
and (AH /A)m is obvious. It is necessary to increase (AH /A)m
and to decrease (AL/A)m as the irreversibility of the adiabatic
processes increases.

5. Several interesting cases

It is significant to note that for some special cases, the results
obtained above may be simplified.

5.1. Strong gas degeneracy

For an ideal Fermi gas, under the very low-temperature and
high-density condition, i.e., the condition of strong gas degen-
eracy, according to Sommerfeld’s lemma, one can derive the
first approximation of the correction function as [11]

F(T ,P ) = 2

5

DP 2/5

T
+ π2

10

T

DP 2/5
(20)

where D = (15π2h̄3)2/5/(2km3/5). By using Eq. (20), Eqs. (15)
and (16) may be, respectively, simplified as

R = AULUH

[
T 2

2 − (XT4)
2]

/
{
UH (T2 + XT4) ln

[
(TL − XT4)/(TL − T2)

]
+ UL(YT2 + T4)r

−2/5 ln
[
(YT2 − TH )/(T4 − TH )

]}
(21)
P
and

ε = [T 2
2 − (XT4)

2]
[(YT2)2 − T 2

4 ]r−2/5
P − [T 2

2 − (XT4)2]
(22)

5.2. Weak gas degeneracy

For an ideal Fermi and Bose gas, under the higher tempera-
ture or lower-density condition, i.e., the condition of weak gas
degeneracy, 0 < z < 1, the Fermi integral fn(z) and the Bose
integral gn(z) may be, respectively, expanded in power of z,
i.e.,{

fn(z) = ∑∞
l=1(−1)l−1 zl

ln

gn(z) = ∑∞
l=1

zl

ln

(23)

Consequently, the first approximation of the correction function
can be expressed as [11,14]

F(T ,P ) = 1 ± EP/T 5/2 (24)

where E = (2πh̄2/m)3/2/(4
√

2k5/2). By using Eq. (24),
Eqs. (15) and (16) may be, respectively, simplified as

R = AULUH (T2 − XT4)(YT2 − T4)

/
{
UH (YT2 − T4) ln

[
(TL − XT4)/(TL − T2)

]
+ UL(T2 − XT4)G ln

[
(YT2 − TH )/(T4 − TH )

]}
(25)

and

ε = 1

G − 1
(26)

where G = (YT2−T4)±EPH [1/(YT2)
3/2−1/(T4)

3/2]
(T2−XT4)±EPL[1/(T2)

3/2−1/(XT4)
3/2] .

5.3. At high temperatures

When the temperature of the gas is high enough and its den-
sity is low enough, the fugacity of the gas z is much smaller
than unity and the correction function F(T ,P ) = 1. The ideal
Bose and Fermi gases become the ideal gas, and consequently,
the quantum Brayton refrigeration cycle becomes the classical
Brayton refrigeration cycle. In such a case, Eqs. (15) and (16)
may be, respectively, simplified as [36]

R = AUH UL(T2 − XT4)/
{
UH ln

[
(TL − XT4)/(TL − T2)

]
+ UL ln

[
(YT2 − TH )/(T4 − TH )

]}
(27)

and

ε = T2 − XT4

YT2 − T4 − T2 + XT4
(28)

Eqs. (27) and (28) have been used to analyze the performance of
an irreversible Brayton refrigeration cycle and some significant
results have been obtained [36].

5.4. Endoreversible cycle

When the irreversibility in the adiabatic processes is neg-
ligible, ηc = ηe = 1 and Y = 1/X = r

2/5
P . Because the value

of F(z) remains unchanged during a reversible isentropic
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process [13], one can easily calculate B = r
2/5
P , and conse-

quently, Eqs. (15) and (16) may be further simplified as

R = AUH UL

(
T2 − r

−2/5
P T4

)
/
{
UH ln

[
(TL − r

−2/5
P T4)/(TL − T2)

]
+ UL ln

[
(r

2/5
P T2 − TH )/(T4 − TH )

]}
(29)

and

ε = 1

r
2/5
P − 1

(30)

It can be seen from Eqs. (29) and (30) that for an endoreversible
quantum Brayton refrigeration cycle, the cooling rate is inde-
pendent of the quantum degeneracy of the working substance
and the coefficient of performance is only dependent on the
pressure ratio.

It is significant to note that Eqs. (29) and (30) may be di-
rectly derived from Eqs. (27) and (28), respectively. It shows
that the cooling rate and coefficient of performance of an en-
doreversible quantum Brayton refrigeration cycle are the same
as those of an endoreversible Brayton refrigeration cycle using
an ideal gas as the working substance. However, it should be
pointed out that the refrigeration heat QL and the cycle period
τ of an endoreversible quantum Brayton refrigeration cycle are
different from those of an endoreversible Brayton refrigeration
cycle using an ideal gas as the working substance. It is seen
from Eqs. (8) and (10) that the refrigeration heat QL and the
cycle period τ of an endoreversible quantum Brayton refrigera-
tion cycle are still dependent on the quantum degeneracy of the
working substance.

6. Discussion

It should be pointed out that like many other cryogenic re-
frigeration systems, regeneration is often adopted in the Bray-
ton refrigeration cycle in order to improve the performance
of the system. It may be clearly seen from the previous in-
vestigations of several authors that for an irreversible Brayton
refrigeration cycle using the ideal gases as the working sub-
stances [23,36], the larger the rate of the regenerated heat is,
the larger the cooling rate and coefficient of performance of the
cycle. For an internal-irreversible Brayton refrigeration cycle
working with the ideal Bose or Fermi gas [15,37], the refriger-
ation load and coefficient of performance of the cycle increase
as the regenerative heat is increased. Using the Brayton refrig-
eration cycle model established here and the analysis method
in Refs. [15,23–27,36,37], one can further discuss the perfor-
mance of an irreversible regenerative Brayton refrigeration cy-
cle working with the quantum gases.

7. Conclusions

The synthesis influence of the quantum degeneracy of the
working substance, irreversibility of the adiabatic processes and
finite-rate heat transfer between the working substance and the
heat reservoirs on the performance characteristics of the Bray-
ton refrigeration cycle working with an ideal quantum gas has
been analyzed by using the theory of statistical mechanics. Ex-
pressions for several important parameters of the refrigeration
cycle are derived and some curves, which can reveal the op-
timum performance characteristics of the cycle, are presented
for a set of given parameters. The optimal regions of the coef-
ficient of performance and power input are determined. Several
interesting cases are discussed in detail. It can be clearly seen
from these general expressions of important performance pa-
rameters and their corresponding curves that the performance
characteristics of a Fermi or Bose Brayton cryogenic refrig-
eration cycle are different from those of a classical Brayton
refrigeration cycle. The coefficient of performance and cooling
rate are, in general, dependent not only on temperature and the
thermal conductances between the working substance and the
heat reservoirs but also on the pressure and other parameters,
while the coefficient of performance of the classical Brayton
cycle is only dependent on the ratio of pressure. It is also found
that the influence of the pressure ratio, the irreversible adiabatic
processes and the finite-rate heat transfer between the working
substance and the heat reservoirs on the performance parame-
ters of the cycle is remarkable. In addition, it is found from
the characteristic curves that the optimal performance char-
acteristics of the quantum Brayton refrigeration cycles using
ideal Fermi or Bose gases as the working substance are dif-
ferent. Because of the influence of the quantum degeneracy,
the coefficient of performance and cooling rate of the Fermi
Brayton cryogenic refrigeration cycle are larger than those of
the Bose Brayton cryogenic refrigeration cycle. The results ob-
tained here will be helpful to the further understanding for the
general optimum performance characteristics of quantum Bray-
ton refrigeration cycles.
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